baseddata.io/backend/schema/schemas.py

46 lines
1.6 KiB
Python

def dt_to_date(datetime):
return datetime.date()
def mangrove_by_country_latest_schema(data):
return {
"country_with_parent": str(data["country_with_parent"]),
"original_pixels": int(data["original_pixels"]),
"total_n_pixels": int(data["total_n_pixels"]),
"cumulative_pixels_diff": int(data["cumulative_pixels_diff"]),
"cumulative_pct_diff": float(data["cumulative_pct_diff"]),
}
def mangrove_by_country_agg_schema(data):
return {
"country_with_parent": str(data["country_with_parent"]),
"year": int(data["year"]),
"total_pixels": int(data["total_pixels"])
}
def bitcoin_business_growth_percent_diff_schema(data):
return {
"country_name": str(data["country_name"]),
"first_value": int(data["first_value"]),
"date_range": str(f'{dt_to_date(data["first_date"])} to {dt_to_date(data["last_date"])}'),
"last_value": int(data["last_value"]),
"difference": int(data["difference"]),
"percent_difference": str(data["percent_difference"])
}
def bitcoin_business_growth_timeseries_schema(data):
return {
"country_name": str(data["country_name"]),
"date": dt_to_date(data["date"]),
"cumulative_value": int(data["cumulative_value"])
}
class DataSerializer:
def __init__(self, schema_func):
self.schema_func = schema_func
def serialize_one(self, data) -> dict:
return self.schema_func(data)
def serialize_many(self, data_list) -> list:
return [self.serialize_one(data) for data in data_list]