def mangrove_by_country_latest_schema(data): return { "country_with_parent": str(data["country_with_parent"]), "original_pixels": int(data["original_pixels"]), "total_n_pixels": int(data["total_n_pixels"]), "cumulative_pixels_diff": int(data["cumulative_pixels_diff"]), "cumulative_pct_diff": float(data["cumulative_pct_diff"]), } def mangrove_country_timeseries_schema(data): return { "year": str(data["year"]), "total_n_pixels": int(data["total_n_pixels"]), } def mangrove_by_country_agg_schema(data): return { "country_with_parent": str(data["country_with_parent"]), "year": int(data["year"]), "total_pixels": int(data["total_pixels"]) } def bitcoin_business_growth_percent_diff_schema(data): return { "country_name": str(data["country_name"]), "date_range": str(f'{data["first_date"]} to {data["last_date"]}'), "first_value": int(data["first_value"]), "last_value": int(data["last_value"]), "difference": int(data["difference"]), "percent_difference": str(data["percent_difference"]) } def bitcoin_business_growth_timeseries_schema(data): return { "country_name": str(data["country_name"]), "date": data["date"], "cumulative_value": int(data["cumulative_value"]) } class DataSerializer: def __init__(self, schema_func): self.schema_func = schema_func def serialize_one(self, data) -> dict: return self.schema_func(dict( data )) def serialize_many(self, data_list) -> list: return [self.serialize_one(data) for data in data_list]